Lefschetz Extensions, Tight Closure, and Big Cohen-macaulay Algebras
نویسندگان
چکیده
We associate to every equicharacteristic zero Noetherian local ring R a faithfully flat ring extension which is an ultraproduct of rings of various prime characteristics, in a weakly functorial way. Since such ultraproducts carry naturally a non-standard Frobenius, we can define a new tight closure operation on R by mimicking the positive characteristic functional definition of tight closure. This approach avoids the use of generalized Néron Desingularization and only relies on Rotthaus’ result on Artin Approximation in characteristic zero. If R is moreover equidimensional and universally catenary, then we can also associate to it in a canonical, weakly functorial way a balanced big Cohen-Macaulay algebra.
منابع مشابه
Canonical Big Cohen-Macaulay Algebras with Applications to Singularities
A canonical construction of a balanced big Cohen-Macaulay algebra for a domain of finite type over C is obtained by taking ultraproducts of absolute integral closures in positive characteristic. Among the applications are a new tight closure characterization of rational singularities in characteristic zero, and a necessary condition for Q-Gorenstein logterminal singularities. In particular, it ...
متن کاملCanonical Big Cohen-macaulay Algebras and Rational Singularities
We give a canonical construction of a balanced big Cohen-Macaulay algebra for a domain of finite type over C by taking ultraproducts of absolute integral closures in positive characteristic. This yields a new tight closure characterization of rational singularities in characteristic zero.
متن کاملBig Cohen-macaulay Algebras and Seeds
In this article, we delve into the properties possessed by algebras, which we have termed seeds, that map to big Cohen-Macaulay algebras. We will show that over a complete local domain of positive characteristic any two big Cohen-Macaulay algebras map to a common big Cohen-Macaulay algebra. We will also strengthen Hochster and Huneke’s “weakly functorial” existence result for big Cohen-Macaulay...
متن کاملSeparable integral extensions and plus closure
We show that an excellent local domain of characteristic p has a separable big Cohen–Macaulay algebra. In the course of our work we prove that an element which is in the Frobenius closure of an ideal can be forced into the expansion of the ideal to a module-finite separable extension ring.
متن کاملCharacteristic p methods in characteristic zero via ultraproducts
In recent decades, by exploiting the algebraic properties of the Frobenius in positive characteristic, many so-called homological conjectures and intersection conjectures have been established, culminating into the powerful theory of tight closure and big Cohen–Macaulay algebras. In the present article, I give a survey of how these methods also can be applied directly in characteristic zero by ...
متن کامل